Abstracts – Browse Results

Search or browse again.

Click on the titles below to expand the information about each abstract.
Viewing 14 results ...

Ababutain, A Y (2002) A multi-criteria decision-making model for selection of BOT toll road proposals within the public sector, Unpublished PhD Thesis, , University of Pittsburgh.

Aktas, C B (2011) Impact of product lifetime on life cycle assessment results, Unpublished PhD Thesis, , University of Pittsburgh.

Aktas, E (2001) Structural design code calibration using reliability-based cost optimization, Unpublished PhD Thesis, , University of Pittsburgh.

Alkhathami, M M (2004) Examination of the correlation of critical success and delay factors in construction projects in the kingdom of Saudi Arabia, Unpublished PhD Thesis, , University of Pittsburgh.

Almazroa, D A (2003) Project delivery system decision framework using the weighting factors and analytic hierarchy process methods, Unpublished PhD Thesis, , University of Pittsburgh.

Amruthapuri, R S G R (2021) Partnership between diverse stakeholders: A potential solution to issues migrant construction workers face in Bengaluru, India, Unpublished PhD Thesis, , University of Pittsburgh.

Banawi, A A (2013) Improving construction processes by integrating lean, green, and six-sigma, Unpublished PhD Thesis, , University of Pittsburgh.

Bilec, M M (2007) A hybrid life cycle assessment model for construction processes, Unpublished PhD Thesis, , University of Pittsburgh.

Campion, N A (2015) Advancing life cycle assessment: Perspectives from the building and healthcare industries, Unpublished PhD Thesis, , University of Pittsburgh.

Hussain, M A D (2001) Value engineering expert system in suburban highway design (VEESSHD), Unpublished PhD Thesis, , University of Pittsburgh.

Kalainesan, S (2007) Best management practices for highway construction site sedimentation basins, Unpublished PhD Thesis, , University of Pittsburgh.

Osman, A E (2006) Life cycle optimization model for integrated cogeneration and energy systems applications in buildings, Unpublished PhD Thesis, , University of Pittsburgh.

  • Type: Thesis
  • Keywords: energy consumption; cooling; equipment; revenues; building design; decision making; life cycle; programming; energy use; linear programming; optimization; commercial building; environmental impact; life cycle cost
  • ISBN/ISSN:
  • URL: https://www.proquest.com/docview/305249628
  • Abstract:
    Energy use in commercial buildings constitutes a major proportion of the energy consumption and anthropogenic emissions in the USA. Cogeneration systems offer an opportunity to meet a building's electrical and thermal demands from a single energy source. To answer the question of what is the most beneficial and cost effective energy source(s) that can be used to meet the energy demands of the building, optimizations techniques have been implemented in some studies to find the optimum energy system based on reducing cost and maximizing revenues. Due to the significant environmental impacts that can result from meeting the energy demands in buildings, building design should incorporate environmental criteria in the decision making criteria. The objective of this research is to develop a framework and model to optimize a building's operation by integrating congregation systems and utility systems in order to meet the electrical, heating, and cooling demand by considering the potential life cycle environmental impact that might result from meeting those demands as well as the economical implications. Two LCA Optimization models have been developed within a framework that uses hourly building energy data, life cycle assessment (LCA), and mixed-integer linear programming (MILP). The objective functions that are used in the formulation of the problems include: (1) Minimizing life cycle primary energy consumption, (2) Minimizing global warming potential, (3) Minimizing tropospheric ozone precursor potential, (4) Minimizing acidification potential, (5) Minimizing NOx, SO 2 and CO2, and (6) Minimizing life cycle costs, considering a study period of ten years and the lifetime of equipment. The two LCA optimization models can be used for: (a) long term planning and operational analysis in buildings by analyzing the hourly energy use of a building during a day and (b) design and quick analysis of building operation based on periodic analysis of energy use of a building in a year. A Pareto-optimal frontier is also derived, which defines the minimum cost required to achieve any level of environmental emission or primary energy usage value or inversely the minimum environmental indicator and primary energy usage value that can be achieved and the cost required to achieve that value.

Rajagopalan, N (2011) Residential life cycle assessment modeling for green buildings and building products, Unpublished PhD Thesis, , University of Pittsburgh.

Sanoubar, S (2022) Temporal and spatial considerations in maintenance planning, Unpublished PhD Thesis, , University of Pittsburgh.